Efficient Local Flexible Nearest Neighbor Classification
نویسندگان
چکیده
The nearest neighbor technique is a simple and appealing method to address classification problems. It relies on the assumption of locally constant class conditional probabilities. This assumption becomes invalid in high dimensions with a finite number of examples due to the curse of dimensionality. Severe bias can be introduced under these conditions when using the nearest neighbor rule. The employment of a local adaptive metric becomes crucial in order to keep class conditional probabilities close to uniform, and therefore to minimize the bias of estimates. We propose a technique that computes a locally flexible metric by means of Support Vector Machines (SVMs). The maximum margin boundary found by the SVM is used to determine the most discriminant direction over the query’s neighborhood. Such direction provides a local weighting scheme for input features. We present experimental evidence, together with a formal justification, of classification performance improvement over the SVM algorithm alone and over a variety of adaptive learning schemes, by using both simulated and real data sets. Moreover, the proposed method has the important advantage of superior efficiency over the most competitive technique used in our experiments.
منابع مشابه
An Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification
The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...
متن کاملAn Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification
The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...
متن کاملK-D Decision Tree: An Accelerated and Memory Efficient Nearest Neighbor Classifier
This paper presents a novel Nearest Neighbor (NN) classifier. NN classification is a well studied method for pattern classification having the following properties; * it performs maximum-margin classification and achieves less than the twice of ideal Bayesian error, * it does not require the knowledge on pattern distributions, kernel functions or base classifiers, and * it can naturally be appl...
متن کاملNNMap: A method to construct a good embedding for nearest neighbor classification
This paper aims to deal with the practical shortages of nearest neighbor classifier. We define a quantitative criterion of embedding quality assessment for nearest neighbor classification, and present a method called NNMap to construct a good embedding. Furthermore, an efficient distance is obtained in the embedded vector space, which could speed up nearest neighbor classification. The quantita...
متن کاملBayesian adaptive nearest neighbor
The k nearest neighbor classification (k-NN) is a very simple and popular method for classification. However, it suffers from a major drawback, it assumes constant local class posterior probability. It is also highly dependent on and sensitive to the choice of the number of neighbors k. In addition, it severely lacks the desired probabilistic formulation. In this article, we propose a Bayesian ...
متن کامل